11 research outputs found

    Effects of P300-based BCI use on reported presence in a virtual environment

    Get PDF
    Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence

    BCI-Based Navigation in Virtual and Real Environments

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de Andalucía (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF

    Brain-computer interfaces for goal orientated control of a virtual smart home environment

    No full text
    A brain-computer interface (BCI) is a new communication channel between the human brain and a digital computer. The ambitious goal of a BCI is finally the restoration of movements, communication and environmental control for handicapped people. However, in more recent research also BCI control in combination with Virtual Environments (VE) gains more and more interest. Within this study we present experiments combining BCI systems and VE for navigation and control purposes just by thoughts. A comparison of the applicability and reliability of different BCI types based on event related potentials (P300 approach) will be presented. In contrast to other BCI approaches yielding only 2-3 degrees of freedom this study is focused on a BCI system that can be realized for Virtual Reality (VR) control with a high degree of freedom and high information transfer rate. Therefore a P300 based human computer interface has been developed in a VR implementation of a smart home for controlling the environment (television, music, telephone calls) and navigation control in the house. Results show that the new P300 based BCI system allows a very reliable control of the VR system. Of special importance is the possibility to select very rapidly the specific command out of many different choices. This eliminates the usage of decision trees as previously done with BCI systems. ©2009 IEEE

    Mergers and difference-in-difference estimator : why firms do not increase prices?

    Get PDF
    Difference-in-Difference (DiD) methods are being increasingly used to analyze the impact of mergers on pricing and other market equilibrium outcomes. Using evidence from an exogenous merger between two retail gasoline companies in a specific market in Spain, this paper shows how concentration did not lead to a price increase. In fact, the conjectural variation model concludes that the existence of a collusive agreement before and after the merger accounts for this result, rather than the existence of efficient gains. This result may explain empirical evidence reported in the literature according to which mergers between firms do not have significant effects on prices

    Evaluating User Experience in a Selection Based Brain-Computer Interface Game: A Comparative Study

    Get PDF
    In human-computer interaction, it is important to offer the users correct modalities for particular tasks and situations. Unless the user has the suitable modality for a task, neither task performance nor user experience can be optimised. The aim of this study is to assess the appropriateness of using a steady-state visually evoked potential based brain-computer interface (BCI) for selection tasks in a computer game. In an experiment participants evaluated a BCI control and a comparable automatic speech recogniser (ASR) control in terms of workload, usability and engagement. The results showed that although BCI was a satisfactory modality in completing selection tasks, its use in our game was not engaging for the player. In our particular setup, ASR control appeared to be a better alternative to BCI control

    Combining BCI with Virtual Reality: Towards New Applications and Improved BCI

    Get PDF
    International audienceBrain-Computer Interfaces (BCI) are communication systems which can convey messages through brain activity alone. Recently BCIs were gaining interest among the virtual reality (VR) community since they have appeared as promising interaction devices for virtual environments (VEs). Especially these implicit interaction techniques are of great interest for the VR community, e.g., you are imaging the movement of your hand and the virtual hand is moving, or you can navigate through houses or museums by your thoughts alone or just by looking at some highlighted objects. Furthermore, VE can provide an excellent testing ground for procedures that could be adapted to real world scenarios, especially patients with disabilities can learn to control their movements or perform specific tasks in a VE. Several studies will highlight these interactions
    corecore